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Abstract A generalized time-dependent mathematical model is developed for a
diffusion–migration–reaction system incorporating a pore blockage effect due to gen-
eration of insoluble precipitates in a porous membrane. The system behavior is inves-
tigated via direct numerical solution of an extended, highly non-linear equation set
based on the classical Poisson–Nernst–Planck equations for ion transport. In order
to treat the buildup of solid reaction products in the membrane, this novel formula-
tion incorporates both a reaction term and a space- and time-dependent diffusivity
expression based on a simple precipitation model. The model is demonstrated for a
generalized case and then extended to cover the well-known reaction of silver and
chloride ions to form insoluble AgCl. Time-dependent concentration profiles of all
ions in the membrane are obtained and the effects of precipitate buildup in the pore
space are investigated. The role of counterions in the transient behavior of the system
is also clarified.

Keywords Porous media · Ion transport · Precipitation

1 Introduction

The classical Nernst–Planck equations for ion transport in thin membranes have been
much discussed in the literature, and numerical models have been developed for both
steady-state and time-dependent ion dynamics [1]. More recently, the equations have
also been extended to include reactions between species [2,3]. In the present work,
a highly generalized diffusion–migration–reaction model considers the case where
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reactions between ions form an insoluble product that physically interferes with species
transport in the membrane. The system modeled here closely resembles plant tran-
spiration experiments performed recently by Schreiber et al. [4] and, less directly,
by Ranathunge et al. [5]. In those experiments, plant membranes were blocked by
precipitation reactions when the membranes were suspended between two salt reser-
voirs. As will be seen, such a system exhibits unique characteristics, with the effect of
the counterion of special interest. It is expected that highly similar models will have
relevance to corrosion processes [6], biomineralization [7], and other areas.

Dilute electrochemical systems involving diffusion, migration, and chemical reac-
tions [8] can be described by a form of the Nernst–Planck equation,

∂ci

∂t
+ ∇•

[
−Di∇ci − zi Di ci

F

RT
∇ϕ

]
−

∑
j

ri j = 0 (1)

where ci , Di , and zi are the concentration, diffusivity, and charge number, respec-
tively, of the i th species, F is the Faraday constant, R is the molar gas constant, T
is the absolute temperature, and ϕ is the electric potential. The final term in (1) is
not commonly included in electrochemical systems; it describes the consumption or
generation of species i due to chemical reactions with one or more other species j .
The value and form of each source/sink term in the summation depends on the rate
equation for the specific reaction being considered, and can be independent of reactant
concentration (zero-order) or some higher-order function of the reactant concentra-
tion(s).

Since the electric potential ϕ in (1) is still unknown, an additional equation describ-
ing the electrostatic behavior of the system is required. A natural choice is Poisson’s
equation,

∇2ϕ = − F

ε

∑
i

zi ci (2)

where ε is the absolute permittivity of the medium. Thus the complete set of governing
equations is given by (1) and (2).

In a porous membrane, an effective diffusivity [9] can be expressed as

Def f = Daqεtδ/τ f (3)

where Daq is the diffusivity in water and the dimensionless parameters εt , δ, and τ f

are the porosity, constrictivity, and tortuosity of the membrane, respectively. Equation
(3) assumes that diffusion occurs only in the pore space and not in the solid phase
of the membrane. The most important of these in the present case is the porosity,
which is defined as the volume fraction of pore space in the membrane ( 0 ≤ εt ≤ 1).
Typical porosities for porous membranes range from 0.3 to 0.7 [10]. In the system
being considered here, the diffusivity is allowed to vary as a function of space and
time, since pores can become locally constricted by the precipitation reaction. The
tortuosity (τ f ≥ 1) of a typical porous membrane is in the range 1.5–2.5 [10], while
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constrictivity (0 ≤ δ ≤ 1 ) is approximately 1 when the membrane pores are large
compared to the diffusing species [9].

2 Methods

As this system was expected to be highly non-linear, numerical modeling was used
to explore its behavior. Non-linearity arises from diffusivity values that not only vary
in space and time, but also depend on the time-integrated local precipitation rate.
The precipitation reaction in turn requires the diffusion of additional reactants to
persist. A one-dimensional, time-dependent numerical model was developed using
COMSOL Multiphysics (version 4.3a, COMSOL AB). To demonstrate the behavior
of a diffusion–migration–reaction system including insoluble reaction products, the
model was initially implemented for a generalized system involving a reaction of the
form A+

(aq) + B−
(aq) −→ AB(s). The system consists of a hydrated porous membrane

of thickness L positioned between two reservoirs containing 0.1 mol/L solutions of
AM and BN, respectively, where M− and N+ are unreactive counterions. All four
species can diffuse and migrate within the water-filled pores of the membrane. While
equilibrium concentrations of H+ and OH− ions are also present in the pore fluid, these
species were neglected since their concentrations are negligible compared to those of
the other ions. The complete set of governing equations in the model therefore consists
of the single equation (2) and a set of five equations of the form (1), one for each of
the species A+, B−, M−, N+, and AB.

The A+ and B− ions react to form the insoluble product AB, which precipitates out
of solution to create a solid obstruction in the membrane pores. Assuming second-order
kinetics, the rate equation for AB formation is given by

rAB = kAB
(
cAcB − Ksp,AB

)
(4)

where kAB is the reaction rate coefficient and Ksp,AB is the solubility product. For
computational simplicity it was assumed that AB is ideally insoluble, i.e. Ksp,AB =
0. The accumulation of solid reaction products causes a local reduction in porosity
and, therefore, in the effective diffusivities of all mobile species in the membrane.
Neglecting nucleation effects, which are unlikely to be a concern given that the system
is heterogeneous, the relative amount of pore volume filled with precipitate is simply
the product of its concentration and molar volume. The precipitates are assumed to be
equiaxed on average such that the amount of pore cross-sectional area being displaced
is equal to the portion of the volume filled with precipitate, and the effective diffusivities
of all species traveling through the membrane are in proportion to the cross-sectional
area of the pore phase. Expanding (3) to incorporate these considerations, a new model
for effective diffusivity was developed:

Def f (x, t) = (
δ/τ f

)
(εt0 − VABcAB (x, t)) Daq (5)

where εt0 is a globally defined initial porosity and cAB(x, t) and VAB are the concen-
tration and molar volume, respectively, of AB precipitate. As the precipitation reaction
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(4) proceeds, the local value of cAB increases, causing a corresponding decrease in
the local effective diffusivity.

Perhaps contrary to initial appearances, Eq. (5) is well-posed and does not allow
for negative effective diffusivities when placed in the broader context of the system
being modeled. Equations (1) and (4) couple cAB to the local effective diffusivities of
the reactants such that as the precipitation reaction proceeds, the diffusion of further
reactants is slowed. A negative feedback cycle thus exists between the precipitate con-
centration and the precipitate reaction rate. Eventually, given well-posed initial and
boundary conditions, the reaction extinguishes itself before negative diffusivity val-
ues can be reached. Nevertheless, when using computationally feasible time and space
discretizations, the extremely large concentration gradients created near the reaction
front in this highly nonlinear system were found to occasionally yield erroneous neg-
ative values of local concentration and diffusivity, which resulted in non-convergence
of the model. While it is expected that convergence could be obtained by refining
the discretization, this proved to be impractical given the computing power available.
Therefore, a minimum threshold porosity value εmin was implemented. For εmin suffi-
ciently close to zero, real system behavior remains well modeled. Numerical stability
of the model was obtained here for a value of εmin = 1 × 10−6.

Rather than offering a detailed description of the behavior in a single pore as in,
for example, Ref. [11], the one-dimensional continuum-level treatment just described
seeks to quantify the average behavior across the entire cross-sectional space of a
porous medium. Specifically, (5) necessarily implies the physical intuition that block-
age in one pore does not prevent diffusion in a neighboring pore, and can thus provide
a better description of complete membrane behavior than single pore models. In the
present case, the initial porosity of the membrane was taken as 0.5 (indicating a pore
content of 50 % by volume), which is typical of real membranes [10].

Tortuosity and constrictivity effects were neglected by setting δ and τ f to unity,
as these parameters were not of interest to the present study and would only serve to
uniformly decrease the effective diffusivity values. For simplicity, the initial (uncon-
stricted) diffusivities of all four mobile ion species were taken as 1.5 × 10−9m2/s,
while the precipitate species was assumed to be completely immobile. The precipitate
and the solid membrane scaffold were assumed to be impermeable to ion transport.

Boundary conditions for the Nernst–Planck equations were of the form

ci (0, t) = c0,i

ci (L , t) = cL ,i (6)

where the concentrations of the i th species in the left and right bathing solutions
are given by c0,i and cL ,i , respectively. In the case of a 0.1 mol/L AM solution at
the left boundary and a 0.1 mol/L BN solution at the right boundary, the reservoir
concentrations are c0,A = c0,M = cL ,B = cL ,N = 100 mol/m3 and c0,B = c0,N =
cL ,A = cL ,M = 0. To improve model stability, the reservoir concentrations were ramped
from zero to the steady-state values given above over the first 0.5 s of the simulation
using a smoothed step function. The reservoirs were assumed to be large enough that
any change in the bathing solution concentrations from the initial values is negligible.
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In the initial state, the membrane contained zero concentrations of all species. Electrical
boundary conditions were specified with the left boundary electrically grounded and a
zero-charge condition (i.e. �n•∇ϕ = 0) at x = L in order to allow the potential across
the membrane to float freely.

The effect of varying the ion mobilities in the system was examined by replacing
the generalized A+ and B− species with silver and chloride ions, respectively, which
are subject to the well-known precipitation reaction Ag+

(aq) + Cl−(aq) −→ AgCl(s). In
recent experimental work, Schreiber et al. [4] formed AgCl precipitates as a means to
block aqueous pores in an isolated plant cuticle by suspending it between reservoirs
of 0.01 M NaCl and 0.01 M AgNO3. The rate equation for AgCl formation is

rAgCl = −k
(

c1/2
Ag c1/2

Cl − c0

)2
(7)

where k is the reaction rate coefficient and c0 is the solubility of AgCl [12]. As this
solubility is at least three orders of magnitude smaller than the species concentrations
[13] the c0 term in (7) is neglected here for computational simplicity. With this simpli-
fication the rate equation for AgCl formation is of the same form as (4). The value of
k was taken as 4.2 m3/(mol s) as given in [12]. In addition, the generalized counterion
species were replaced with various combinations of actual soluble species (lithium,
sodium, and potassium cations, and nitrate and acetate anions). The tendency toward
local electroneutrality implied by Eq. (2) suggests that the diffusion of the reacting
ions may be suppressed by a slower diffusing counterion. All diffusion coefficients
used were obtained from tabulated values in water [13]. The parameter values used in
the model are summarized in Table 1.

3 Results and discussion

Time-dependent concentration profiles for the generic reactive ions (A+ and B−)

are shown in Fig. 1, and the corresponding profiles for the generic unreactive ions
(M− and N+) are shown in Fig. 2. The time-dependent behavior of the system consists
of an initial transient period followed by a metastable period where concentrations
change slowly over time, a second transient period, and a final steady state. Beginning
at t = 0, ions begin to enter the porous membrane and a reaction front is established at
the midpoint of the membrane as the A+ and B− ions begin to meet and annihilate each
other. An initial near-steady state is established after approximately 5 s, which is on the
order of the characteristic diffusion time L2/D. In this state, the concentration profiles
of the unreactive ions are nearly linear, as would be expected for a simple diffusion
between two reservoirs of constant concentration. In contrast, the concentrations of the
reactive ions are sub-linear due to the depletion of ions at the reaction front. Without
the precipitation of the reaction product, this would remain the final state of the system.

Between approximately t = 5 and t = 135 s, the ion concentration profiles in
the membrane change gradually as precipitate builds up in the membrane pores. The
effective membrane porosity due to this reaction product buildup is shown in Fig. 3.
As the effective porosity within the reaction zone decreases, the ion concentration
gradients around this region gradually increase. At approximately t = 140 s, the
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Table 1 Parameters used in the
model

Symbol Meaning Value References

Daq Unconstricted
diffusivity
A+, B−, M−, N+ 1.5 × 10−9 m2/s –

Ag+ 1.65 × 10−9 m2/s [13]

Cl− 2.03 × 10−9 m2/s [13]

CH3COO− 1.09 × 10−9 m2/s [13]

K+ 1.96 × 10−9 m2/s [13]

Li+ 1.03 × 10−9 m2/s [13]

Na+ 1.33 × 10−9 m2/s [13]

NO−
3 1.90 × 10−9 m2/s [13]

L Membrane
thickness

0.1 mm –

VAB Precipitate molar
volume

2.58 × 10−5 m3/mol [13]

kAB Reaction rate
constant

4.2 m3/(mol s) [12]

ε Absolute
permittivity of
water

7.08 × 10−10 F/m [13]

δ Membrane
constrictivity

1 –

εt0 Initial membrane
porosity

0.5 –

τ f Membrane
tortuosity

1 –

Fig. 1 Concentration profiles for reactive ions A+ (solid lines) and B− (dashed lines) at several instants
of time indicated in seconds after initiating ion flux at t = 0. Reservoir concentrations are indicated at the
boundaries
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Fig. 2 Concentration profiles for unreactive counter-ions M− (solid line) and N+ (dashed line) at several
instants of time indicated in seconds after initiating ion flux at t = 0. Reservoir concentrations are indicated
at the boundaries

Fig. 3 Local effective porosity in the membrane at several instants of time indicated in seconds after
initiating ion flux at t = 0

effective porosity at the center of the reaction zone reaches the near-zero minimum
value allowed by the model and the local diffusivities of all ions become negligible.
At this point, fresh A+ and B− reactants are prevented from diffusing to the reaction
front in appreciable quantities, and their concentrations quickly approach a constant
value on either side of the blockage as ions diffuse inward from the boundaries. The
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concentrations of N+ ions on the left side of the obstruction and M− ions on the
right side approach zero as the counterions diffuse back out of the membrane into
the reservoirs, as dictated by the boundary conditions. In the final steady state, seen
at t = 150 s in Figs. 1 and 2, the concentration profiles of all ions resemble step
functions with uniform concentrations nearly equal to the reservoir concentrations
on either side of the blockage. The time required to establish the final steady state
once the membrane is blocked is approximately 5 s, which again is on the order of the
characteristic diffusion time of the ions through the membrane.

The inward fluxes of all four species at the left boundary (i.e. x = 0) are shown
in Fig. 4a. As the membrane is exposed to the AM bathing solution at x = 0, this
boundary experiences an inward flux of A+ and M− and an outward flux of N+, while
the flux of B− is very close to zero since no appreciable quantity of B− ions reaches the
left side of the reaction zone. (The flux behavior at x = L is identical but with the roles
of the AM and BN solutions reversed.) The fluxes of A+ and M− are initially equal
due to the constraint imposed by Poisson’s equation, but once N+ counterions are
locally available to maintain charge balance the flux of M− at the boundary decreases
to approximately half that of A+. The reason for this difference in flux is that the
driving force for inward flux of A+ is a gradient in concentration reaching zero at the
reaction front halfway across the membrane while the driving force for inward flux of
M− is a gradient in concentration reaching zero at the interface with the BN solution
all of the way across the membrane. During the metastable period (approximately
10 s < t < 135 s ), the inward fluxes of A+ and B− are balanced by their mutual
annihilation at the reaction front, while the fluxes of M− and N+ into the domain
are balanced by equal outward fluxes at the opposite boundaries. The change in flux

Fig. 4 a Inward flux of each ionic species in mmol/(m2 s) at x = 0 as a function of time (note axis break).
b Net (integrated) reaction rate in mol/(m3 s) as a function of time
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with time is initially linear, but becomes more rapid as the increasing concentration
gradients cause the reaction zone to become more spatially concentrated. After the
effective porosity becomes negligible at t = 140 s the fluxes quickly drop off to near
zero as only minute quantities of ions are able to penetrate the reaction zone, and
steady state is obtained.

The spatially integrated reaction rate (i.e., total rate of AB production throughout
the membrane) as a function of time is shown in Fig. 4b. This plot shows a similar
trend to Fig. 4a, with a gradual decrease in reaction rate over the metastable period
followed by a rapid dropoff at approximately t = 140 s. Although the net reaction rate
shown in the figure decreases over the course of the near-steady period, the maximum
local reaction rate (not shown) increases over the same period as the reaction zone
becomes narrower and the reactant concentrations increase.

The above modeling provides a good description of “ideal” diffusion, migration,
and precipitation processes in a porous membrane. However, the generalized system
is somewhat unrealistic in that the mobilities of all ionic species are equal. In order to
put the above results on a more realistic footing, the model was modified by replacing
the generalized A+ and B− ions with silver and chloride ions, respectively, which
react according to Ag+

(aq) + Cl−(aq) −→ AgCl(s). To investigate the role of the coun-
terion species, six different cases were modeled (one for each possible combination
of Li+, Na+, and K+ cations and NO−

3 and CH3COO− anions). While these substi-
tutions have a negligible effect over large timescales, the initial transient behavior is
quite different from the generalized case.

Without an applied voltage across the membrane, the effect of ion charge is subtle
but tied to presence of counterions. In the initial state of the modeled system, the
aqueous phase is free of charge, and thus the initial diffusion of the ions from either side
is limited by the diffusivity of the slower ion in each bathing solution. Specifically, the
initial diffusion of the faster species is held back by the development of a counteracting
electric field arising from the local charge imbalance. The initial reaction zone location
where the Ag+ and Cl− begin to form precipitate thus depends on the identity of the
counterions in the bathing solutions. Figure 5 shows the position of the reaction zone
as a function of time for all six different combinations of counterions. Results are
shown only for t > 3 s as the position of the reaction front could not be reliably
determined at earlier timesteps.

The theoretical initial location of the reaction zone, l0, is determined by the ratio
of the diffusion lengths of the slower ion in each bath. Since the diffusion length is
proportional to the square root of diffusivity, l0 is expected to be proportional to the
dimensionless ratio

R =
√

D1√
D1 + √

D2
(8)

where D1 and D2 are the diffusivities of the slower ion in the left and right bath,
respectively. The inset in the figure plots the position of the reaction zone at t = 3 s as
a function of this ratio, showing the expected linear dependence. Interestingly, while
the initial position of the reaction zone depends on the counterion, the final location of
the precipitate remains largely the same in each of the six cases. This occurs because
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Fig. 5 Position of the reaction front versus time for several different counterion species. Positive counterions
(N+) are Li+ (upward triangles), Na+ (circles), and K+ (downward triangles); negative counterions (M−)

are NaNO−
3 (solid symbols) and CH3COO− (open symbols). Inset: Initial position (t = 3 s) of the reaction

front versus the dimensionless quantity R given by (8)

once the initial reaction zone is established, the counterions have filled the membrane
and further diffusion of the reacting species ceases to be determined by the diffusivity
of the counterions. Since the reaction has only started to proceed at this point, it
would seem impossible to specify the location of the precipitate using this effect. The
precipitate blockage in a porous membrane will be located at a position determined by
the relative diffusion lengths of the reacting ions, which is around 0.46 · L for AgCl.

4 Conclusions

The behavior of a diffusion–migration–reaction system with insoluble reaction prod-
ucts was investigated via numerical modeling. The system was modeled using the
Poisson–Nernst–Planck equations along with a time- and space-dependent diffusivity
expression to account for physical obstruction caused by the buildup of solid products
of reaction between diffusing ions. The specific systems modeled consisted of reser-
voirs containing generalized aqueous solutions “AM” and “BN” positioned on either
side of a hydrated porous membrane followed by the specific case used in previously
reported experimentation using AgNO3 and NaCl solutions. Various combinations of
counterions were also investigated. An initial near-steady state is quickly established
with a reaction zone at the center of the domain. As precipitate builds up in the reaction
zone, the effective local ion diffusivities approach zero and concentration gradients
become large. The system reaches a final steady state where all species exhibit a step
concentration change at the reaction zone. Transients establishing the first metastable
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state and then the final steady state occur over timescales related to the diffusion of ions
through the membrane. The effect of varying the ion diffusivities is small, changing
only the initial site of the precipitation reaction. It is believed that generalized PNP
modeling of this sort can be useful in the future to quantitatively understand other
situations where ion reactions and/or phase transformations affect ion motion.
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